5.1 Views of solids

- Spatial sense helps us create, analyze, mentally visualize, classify and transform solids.
- Drawing 3D solids could be challenging but a lot of fun.
- Google:

3D street arts.

Dimensions of Space

Dimension Looks Like	Description	Units	
$0^{\text {th }}$	\bullet	A single point	No unit
$1^{\text {st }}$	\longrightarrow	A line - length	Unit 1
$2^{\text {nd }}$	$\boxed{\square}$	A flat surface - area	Units 2
$3^{\text {rd }}$	\uparrow	A space - volume	Units ${ }^{3}$

Views of a Cube (p. 150 Activity 2)

Using cubes, the object on the right is constructed.
Depending on from where you are looking, you can see different views of the object. The front view of this object is:

What would the view of this object be

Coded blueprint of a solid:

- (only for the top/bottom view)
- It indicates in each square of the base of the solid, the number of cubes stacked up vertically over it . a)
b)

Views of a Cube (p. 151 \# 1)

1. Draw the requested views for each of the following solids.
a) Front Right Top

b)

c)

Practice:
Page 151 \# 2-10

5.2 Perspectives of solids

Three different ways to draw 3D solids:

1. Oblique Perspective
2. Axonometric Perspective
3. Linear Perspective.

2. Axonometric Perspective

-The edges are parallel to the axis
-Not all edges are necessarily congruent (same length)

1. Oblique Perspective

-The face $A B C D$ is parallel with the sheet's plane
-The receding edges are the same length and parallel with each other.

3. Linear Perspective

-One of the faces is parallel with the sheet's plane.

- The receding lines meet at a vanishing point.

5.3 Geometric Solids

PRISMS

Formed by taking a 2D object and \qquad it to make a 3D solid.

Square Prism

Triangular base Prism

Note: The prism is named after the shape of the \qquad not the \qquad
Properties of Prisms:

- has \qquad that are parallel and congruent
- the \qquad are perpendicular to the \qquad
- the \qquad is the length of one of the \qquad

PYRAMIDS

The Pyramid is named after the shape of \qquad

Properties of Pyramids

- a \qquad makes the base
- the Lateral Faces are \qquad
- the height of each lateral face is called the \qquad
- a pyramid is right when the height from the \qquad touches the base at 90°

CYLINDERS

Generated by taking a \qquad and dragging it to make a 3D solid; or by rotating a \qquad .

Note: Cylinders can either be \qquad or \qquad .

- two discs with the same radius make the \qquad
- the radius of the base is the radius of the \qquad
- the height is the distance between the \qquad

CONES

Generated by rotating a \qquad around one of its legs.

It is a curved solid that ends at an \qquad .

Properties of Cones

- May or may not have a \qquad
- Curved surface is called \qquad
- The \qquad is on the lateral surface

- The \qquad is the perpendicular distance from apex to base

Note: We can use Pythagorean Theorem to figure out the radius, height or slant height. $s^{2}=h^{2}+r^{2}$

Net of a Cone:

$$
\frac{a}{360^{\circ}}=\frac{m A B}{2 \pi s}
$$

SPHERES

Generated by rotating a \qquad around its diameter. All points on its surface are equidistant from the centre.

Properties of Sphere

- any segment joining the centre of the sphere to the surface is called the \qquad .
- Any segment that connects 2 points on the surface of the sphere AND goes through the centre is the \qquad .

